Aerial for Wireless Transmission and Reception

Image

The transmission media often referred to in the literature as the physical medium used to link devices to form a computer network include electrical cable, optical fiber and free space. In the OSI model, the software to handle the media is defined at layers 1 and 2 the physical layer and the data link layer. A widely adopted family that uses copper and fiber media in local area network (LAN) technology are collectively known as Ethernet. The media and protocol standards that enable communication between networked devices over Ethernet are defined by IEEE 802.3. Wireless LAN standards use radio waves, others use infrared signals as a transmission medium. Power line communication uses a building's power cabling to transmit data. An optical fiber is a glass fiber. It carries pulses of light that represent data via lasers and optical amplifiers. Some advantages of optical fibers over metal wires are very low transmission loss and immunity to electrical interference. Using dense wave division multiplexing, optical fibers can simultaneously carry multiple streams of data on different wavelengths of light, which greatly increases the rate that data can be sent to up to trillions of bits per second. Optic fibers can be used for long runs of cable carrying very high data rates, and are used for undersea communications cables to interconnect continents. There are two basic types of fiber optics, single-mode optical fiber (SMF) and multi-mode optical fiber (MMF). Single-mode fiber has the advantage of being able to sustain a coherent signal for dozens or even a hundred kilometres. Multimode fiber is cheaper to terminate but is limited to a few hundred or even only a few dozens of meters, depending on the data rate and cable grade. A network interface controller (NIC) is computer hardware that connects the computer to the network media and has the ability to process low-level network information. For example, the NIC may have a connector for accepting a cable, or an aerial for wireless transmission and reception, and the associated circuitry.

In Ethernet networks, each network interface controller has a unique Media Access Control (MAC) address usually stored in the controller's permanent memory. To avoid address conflicts between network devices, the Institute of Electrical and Electronics Engineers (IEEE) maintains and administers MAC address uniqueness. The size of an Ethernet MAC address is six octets. The three most significant octets are reserved to identify NIC manufacturers. These manufacturers, using only their assigned prefixes, uniquely assign the three least-significant octets of every Ethernet interface they produce. A repeater is an electronic device that receives a network signal, cleans it of unnecessary noise and regenerates it. The signal is retransmitted at a higher power level, or to the other side of obstruction so that the signal can cover longer distances without degradation. In most twisted pair Ethernet configurations, repeaters are required for cable that runs longer than 100 meters. With fiber optics, repeaters can be tens or even hundreds of kilometers apart. Repeaters work on the physical layer of the OSI model but still require a small amount of time to regenerate the signal.