Radiation Dose in the Neonatal Intensive Care Unit

Image

 Radiation is one of the important new mean of investigation in modern medicine. Diagnostic radiology is increasingly used in the assessment and treatment of neonates requiring intensive care Therefore, in a department such as the Neonatal Intensive care Unit (NICU), it becomes of a great importance as it gives the physician an easy and accurate way of examining neonate. The commonest clinical indications of chest radiography on NICU include;  acquired pneumonia pre/ post-delivery and pneumothorax which is a complication of RDS or aspiration ventilation in the newborn. Consequently there are a lot of risks in using x-rays on the human body cells. These risks can be divided into somatic and genetic effects. The somatic effects include infertility, cancer and cataracts. The genetic effects show abnormal features in the infants after the excessive exposure of the pregnant mother to radiations .However in an NICU, where the incubator plays the role of the mother womb, it becomes impossible to avoid radiation that is because the neonate is got to have an x-ray taken at least to justify his /her stay in the unit, where the premature newly born sick children infants are kept to be looked .

In the NICU, where physicians weigh the risks and benefits of using x-rays as investigation tool. They tend to go for it as they are in a condition of life saving. Nevertheless, thinking of those risks associated with using of x-rays motivated researches to find a way to keep them to the lowest level that is possible.

Radiographic examinations of neonates are particularly critical because of delayed radiogenic cancers as a consequence of a relative longer life expectancy .The small size of neonates, especially of premature infants, places all organs within the useful beam, resulting in a higher effective dose per radiograph than may be the case with older children and adults. Therefore, radiation doses for neonatal X-ray examination should be kept to a minimum. It is also important to ensure that radiation doses from repeated radiographic examinations carried out frequently in the same room of the NICU should be kept at a minimum. The aim of this work was to determine the radiation doses received by the infants from radiographic exposure in order to find the dose received by brain, thyroids and gonadal organs (i.e. ovaries and testicles) during an antero-posterior chest x-ray with and without shielding.

Journal of medical physics and applied sciences is an international peer reviwed journal aiming to publish the most relevant and recent research works across the world. Medical Physicists will contribute to maintaining and improving the quality, safety and cost-effectiveness of healthcare services through patient-oriented activities requiring expert action, involvement or advice regarding the specification, selection, acceptance testing, commissioning, quality assurance/control and optimised clinical use of medical devices and regarding patient risks and protection from associated physical agents (e.g. x-rays, electromagnetic fields, laser light, radionuclides) including the prevention of unintended or accidental exposures; all activities will be based on current best evidence or own scientific research when the available evidence is not sufficient.

We are inviting the worldwide researchers and scholars to share their valuable research work in our journal.  We always encourage new research works under the scope of our Journal. You can submit the manuscript as an email attachment to medicalsci@scholarlymed.com or through online at https://www.imedpub.com/submissions/insights-medical-physics.html

Media contact

Eliza Miller

Managing Editor

Journal of Medical Physics and Applied Sciences